4.3 Area Rules III and Territory Rules I |
---|
Prisoners do not count in area rules III, so the prisoners given for passes in territory rules I to ensure an equal number of moves would be meaningless. Under area rules III it does not matter whether the players make different numbers of moves in the final stage, as area rules III allow, or the same number of moves, as territory rules I require. The players can play area rules III up to the first pass, then apply territory rules I for the rest of the game by giving prisoners for passes, and the result will be in complete agreement. Therefore, you can transform territory rules I into area rules III simply by replacing the rule of scoring. For proof that the results agree, look at Table 1. |
|
On an N x N board, suppose that prior to the preliminary end of the game (the first two consecutive passes in territory rules I, equivalent to the first pass in area rules III) Black has played M1 moves and White has played M2 moves. We will continue to use 1 to designate Black and 2 to designate White. Let Li (i = 1, 2) be the number of stones the board. Then Black has lost M1 - L1 prisoners and White has lost M2 - L2. Let Ti be the number of stones played after the preliminary end, and Pi be the number passed as prisoners. Let Qi be the number of stones on the board at the end of the game, and let Si be the amount of territory surrounded. The number of prisoners captured after the preliminary end is Li + Ti - Qi. The total number of prisoners is therefore Mi + Ti - Qi + Pi.
Another consequence of this proof is that since area rules II do not have the half-point adjustment, when Black makes the last competitive move, area rules II are one point different from area rules III and territory rules I. Note that this does not depend on the size N of the N x N go board. There is a misconception that the one-point difference arises only when N is an odd number, but we have seen that this is not true. Table 2 gives the numerical values for the Go-Miyamoto game. |
|